単一光子のふしぎなふるまい
1807年にヤングは干渉実験によって光の波としての性質を確かめました。
さらに、同じころ、光が波であるとして、それは電波と同じ「よこ波」だろうか?
それとも音のような「たて波」だろうか?
その答を見つけたのはフレネルとアラゴでした。
この実験には、当時から知られていた「偏光」という概念が用いられました。
このページでは、「偏光」を用いた実験を紹介します。
光は、「よこ波」
フォトン(光子)の二重性 で紹介したヤングの干渉実験では、光が「たて波」であったとしても干渉縞は発生する様子を説明できますが、フレネルとアラゴは、当時からすでに知られていた「偏光」という概念を用いた干渉実験を行い、光が「よこ波」であることを証明しました。ここに光の真の姿のもう一面が明らかになりました。
偏光を図で理解してみると
フレネル・アラゴの実験
フォトン(光子)の二重性 で紹介した単一光子のヤングの干渉実験では、ダブルスリットを透過する光によって波の性質を示す干渉縞が現れました。この実験では、光子はたった一個の粒子であるのにもかかわらず、二つのスリットの両方を同時に通過でき、波としての性質を示す干渉縞を作り出しました。この結果から、光子は粒子でもあり波でもある、すなわち二重性を示していることが分かります。
次にフレネル・アラゴの実験系を図Bに示します。ヤングの干渉実験との違いは、ダブルスリットのそれぞれに右45°傾いた偏光子と左45°傾いた偏光子がそれぞれ貼ってあることです。このため、それぞれのスリットから出てくる「よこ波」である光の偏光は互いに直交した独立した成分です。図のピンクの矢印と緑の矢印が偏光の向きを示しています。図B-1では、ピンクと緑はお互いに直交しています。この場合、スクリーン上には干渉縞は現れません(図B-1)。<参考:日経サイエンス2012年3月号32「光子の逆説」>
この結果は以前に フォトン(光子)の二重性 で説明したヤングの干渉実験の結果とは異なりますね。どうして干渉縞が現れないかが分りにくいですが、後ほど、別の言い方で補足説明します。
次に、図B-2に示すようにダブルスリットの後ろに鉛直方向(上下方向)の検光子(偏光子と同じですが、光路上に幾つかの偏光子を並べる時、最後の1個を検光子と呼びます)を置きます。この時は、何が起こるでしょうか?右のスリットから出た光の偏光(振動方向)は右に45°傾いていますが、検光子を通り抜けた時、振動方向は鉛直(上下)に変わります。同様に、左のスリットから出た光の偏光も、振動方向は鉛直(上下)です。従って、この場合は最後のスクリーン上では同じ上下方向の偏光なので干渉した結果、干渉縞が現れます(図B-2)。
最後に、一番最初の図B-1についてもう一度、別な言い方で説明します。この実験では、検光子はありませんが、図B-2と図B-5にならって、ダブルスリットのそれぞれを通り抜けた左45°と右45°の2つの偏光の「よこ波」を、それぞれ上下2つの偏光と水平2つの偏光の合計4つに分けて考えみましょう。上下の2つによって現れる干渉縞は図B-2に示したように中心が明るいです。一方、水平の2つによって現れる干渉縞は図B-5に示したように中心が暗いです。その明暗の位置がずれている2つの干渉縞が重なった結果、全体としては干渉縞が消えてしまったと言えます。この説明でお分かりでしょうか?
短パルス光の単一フォトン
浜松ホトニクスにおける実験(短パルス単一光子状態におけるフレネル・アラゴの偏光干渉実験)
図B-6で見たように二つの互いに直交する偏光は干渉しないので、図E-1は干渉縞は発生しません。つまり、両方のスリットからの光が観測されており、左右に広がって見えます。図E-2はヤングの干渉実験と同様に干渉縞が見えます(動画2)。図E-3は図E-2と明暗が反転しています。図E-4は右のスリットからの光のみが透過するため、左に偏っています(カメラだと左右が反転して見える)。図E-5は図E-4と左右が逆です。最後の実験では、通常のフレネル・アラゴの偏光干渉実験を発展させて、円偏光の光を用いました。具体的には、ダブルスリットの手前に1/4波長板を追加設置しました。結果を図E-6に示します。この状態では、ダブルスリットのそれぞれに通り抜ける偏光成分に1/4波長の位相ずれが発生します。こうすると、干渉縞も1/4波長だけ横にずれて、画面の中心が干渉縞の明暗のちょうど中間になりました。
本ページに掲載している画像、動画コンテンツの引用、他媒体でのご利用については、こちらのページ(本ウェブサイトの著作物、商標について)をご覧ください。
「短パルス光を用いた単一フォトンによるヤングの干渉実験」、「短パルス単一光子状態におけるフレネル・アラゴの偏光干渉実験」に関連する文献はこちらをご覧ください。
文献(1)
高橋 宏典, 青島 紳一郎, 浦上 恒幸, 竹森 民樹, 平野 伊助, 土屋 裕, 短パルス光を用いた単一光子状態におけるヤングの干渉実験, 光学, 20 (1991) 108-111.
(H. Takahashi, S. Aoshima, T. Urakami, T. Takemori, I. Hirano, and Y. Tsuchiya, Young's Interference Experiment in the Single-Photon Region Using Short Optical Pulses, Kogaku, 20 (1991) 108-111. [published in Japanese])
https://annex.jsap.or.jp/photonics/kogaku/public/20-02-kenkyu6.pdf
文献(2)
高橋 宏典, 青島 紳一郎, 浦上 恒幸, 竹森 民樹, 平野 伊助, 土屋 裕, 単一光子状態における偏光干渉実験, 光学, 21 (1992) 165-168.
(H. Takahashi, S. Aoshima, T. Urakami, T. Takemori, I. Hirano, and Y. Tsuchiya, Interference Experiment of Polarized Light in the Single-Photon Region, Kogaku, 21 (1992) 165-168. [published in Japanese])
https://annex.jsap.or.jp/photonics/kogaku/public/21-03-kenkyu.pdf
この実験では、不思議に思えることがあります。ヤングの干渉実験では、1つの光子が二つのスリットを同時に通り抜けて、スクリーン上で粒子として観測した結果として、波の性質を示す干渉縞が生じました。フレネル・アラゴの干渉実験では、二つのスリットを通り抜けた後の光子の偏光が、それぞれ右斜め45°と左斜め45°の「よこ波」です。良く考えてみてください、1個しかない光子が二つの直交する偏光を同時にとるとはどういうことでしょうか?さらに、検光子を通り抜けた先の状態では何が起こるのでしょうか?
ヤングの実験では、光子は空間を人に見られないで飛んでいる時は波として広がっているが、スクリーン上で観測された瞬間に粒子になって波は消えてしまうと考えました<波束収縮説>。しかし、フレネル・アラゴの実験では、検光子を抜けた時に既に干渉するかどうかが確定してしまうので、<波束収縮説>では、説明できません。
※この記述は正しくないことがわかりましたので削除訂正させていただきます。(2021年2月16日追記)
光が「よこ波」であるという、光の真の姿のひとつが分かったと同時に、その進化型とも言える「偏光」を使った実験を通しても、フォトンはもっとふしぎなふるまいを見せました。フォトンの真の姿を追いかける私たちにとって、それはもっともっと深淵へと私たちを誘っているかのようです。まさしく、アインシュタインが「For the rest of my life, I will reflect on what light is.(私の残りの人生では、光が何であるのかを追究する。)」(1917年)と言ったように、光は、私たちのチャレンジをひきつけてやまない存在なのです。